

Reply: Yes, Team of Rivals

Journal:	Biology Letters
Manuscript ID:	RSBL-2015-0319.R1
Article Type:	Invited Reply
Date Submitted by the Author:	02-Jun-2015
Complete List of Authors:	Goodwin, Sarah; University of Massachusetts Amherst, Graduate Program in Organismic and Evolutionary Biology Podos, Jeffrey; University of Massachusetts, Biology Department; University of Massachusetts Amherst, Graduate Program in Organismic and Evolutionary Biology
Subject:	Behaviour < BIOLOGY
Categories:	Animal Behaviour
Keywords:	cooperation, coalition, vocal performance

Sarah E. Goodwin ¹
Jeffrey Podos ^{1, 2}
1. Graduate Program in Organismic and Evolutionary Biology, University of
Massachusetts Amherst, Amherst MA, USA
2. Department of Biology, University of Massachusetts Amherst, Amherst MA, USA
word count: 1022

The main conclusions of our original report [1] were that male chipping sparrows form
defensive coalitions in response to simulated territorial intrusion, and that coalition
formation is predicted by relative structural properties of birds' songs. Akçay & Beecher
(hereafter "A&B" [2]) critique our report on a number of fronts including study design,
methods, analysis, and interpretation. We here address these critiques by clarifying
points from the original report and by presenting new information and analyses.
A&B first question our focus on trill rate rather than vocal deviation as a predictor of
coalitions. Vocal deviation is a composite index of performance based on trill rate and
frequency bandwidth, and has indeed been adopted widely in tests of song function [3].
Yet the raw parameters themselves, trill rate and frequency bandwidth, are also proper
indices of vocal performance because, in general, faster or wider bandwidth trills are
harder to produce [3]. Our demonstration in chipping sparrow songs of a trade-off
between maximal trill rate and frequency bandwidth [1] suggests that any of these
parameters might signal vocal performance. Yet determining which are salient during
vocal communication requires controlled perceptual tests that isolate the effect of each
parameter, and variation therein, on birds' responses [1]. We now know that chipping
sparrow males attend to trill rate, as birds' responses to playback in our original study [1
non-coalition trials] covaried with trill rates of both stimuli and subjects. By contrast it is
unknown whether chipping sparrows perceive or attend to variations in frequency
bandwidth or thus, by extension, vocal deviation.
A&B's other method and design critiques are readily countered. First, A&B question our
reliance on song structure to identify individual chinning sparrows. Each male chinning

sparrow produces only a single song type, and these are individually distinct, thus
allowing us to identify birds from their songs with confidence. This same "claim" has also
been made and applied by others [4]; in Fig. S1 we offer a supplemental illustration and
analysis that further confirm the individually-distinct nature of chipping sparrow songs.
Second, A&B worry about numerous aspects of chipping sparrow behavior — song
sharing, dawn song at territory boundaries, territory instability, polyterritoriality, and
"land-grabs" — that might have confounded our description of coalition behavior.
Neighboring birds do often share song types, but even similar song types are readily
distinguished by structural features including trill rate (Fig S1). While birds sing jointly at
territory boundaries at dawn, our playback trials were conducted (and coalitions
observed) post-dawn, when more typical territorial behavior is observed. The instability
of territories mentioned by A&B refers to the propensity of chipping sparrows to
occasionally abandon territories over the course of the season. This has no bearing on
coalition formation for our subjects, who remained on territory during the time frame of
their trials. Polyterritorialty refers not to joint defense of the same territory, but rather to
the rare behavior of single individuals defending multiple territories [5]. The relevance to
coalitions here is not apparent to us. Allies did not seem to engage in "land-grabs";
although not indicated in our original report, we observed that soon after playback trials
ceased, all allies flew back to their neighboring territories where they could be found on
subsequent days.
A&B next offer two critiques about potential non-independence of data. The first critique,
that all coalitions were not independent samples, is broadly overstated. The 9 coalitions

occurred in 8 territorial males presented with 8 distinct song types -- all independent

samples. Moreover, coalitions for the one repeat beneficiary were initiated by different
(and thus partly independent) trill rate variants. The second critique, about repeat use of
stimulus "tapes", is not only irrelevant to the topic of coalitions but is also incorrect, as
the units in our analysis of trill rate effects were stimulus sets, not subjects.
The final set of critiques challenge our statistical analysis of two data patterns: (i) in
every coalition observed (9 of 9), ally trill rates exceeded resident trill rates; and (ii) in 8
of 9 cases, trill rates of simulated intruders exceeded trill rates of residents. We had
analyzed both patterns using binomial tests, and A&B offer that our assumptions of 0.5
chance levels (made a priori as we had no expectations of bias) could be recalibrated.
For the first test (allies x residents), A&B's proposed recalibration uses population-wide
data, following their blanket assertion that "neighbors were notrecorded". Although not
stated in our original report, we did in fact record complete neighborhoods for 3 of our
later subjects, and for these birds the recalibrated chance level (% neighbors with trill
rates exceeding those of corresponding beneficiaries) is 0.49. If we merge these
precisely observed values with the population-based chance level estimate of 0.74 for
the remaining 6 birds, as recommended by A&B [2], a significant effect is retained
(recalibrated chance level = $(0.49 * 0.333) + (0.74 * 0.666) = 0.656$, weighted Binomial
Test $p = 0.033$). For the second test (simulated intruders x residents), we concur with
A&B's proposed recalibration and corresponding p-value adjustment.
To conclude, we stand by our original methods, design, and analyses, with the one
caveat that relationships among intruder, resident, and ally trill rates were not as
statistically robust as estimated by our original, uncalibrated binomial test values.
Nevertheless, available data still support our original interpretation: chipping sparrows

85	form teams of rivals in response to simulated territorial intrusion, and those teams of
86	rivals are predicted by song structure. Open questions about coalition formation in
87	chipping sparrows will be best resolved not through further parsing of available data, but
88	in follow-up studies that use targeted experimental designs and larger sample sizes.
89	
90	References
91	
92	1. Goodwin, S.E., Podos, J. 2014 Team of rivals: alliance formation in territorial
93	songbirds is predicted by vocal signal structure. Biol. Lett. 10, 20131083.
94	(doi:10.1098/rsbl.2013.1083).
95	
96	2. Akçay, C. & Beecher, M.D. 2015 Team of Rivals? <i>Biol. Lett.</i> in press.
97	
	2 Dadas I. Lahti D.C. 9 Masalau D.L. 2000 Vasal narfarmanas and
98	3. Podos, J., Lahti, D.C. & Moseley, D.L. 2009 Vocal performance and
99	sensorimotor learning in songbirds. Adv. Study Behav. 40, 159-195.
100	(doi:10.1016/S0065-3454(09)40005-6).
101	
102	4. Liu, W.C., & Kroodsma, D.E. 2007. Dawn and daytime singing behavior of
103	chipping sparrows (Spizella passerina). Auk 124: 44-52.
104	
105	5. Liu W.C. 2004 The effect of neighbours and females on dawn and daytime
106	singing behaviours by 83 male chipping sparrows. Animal Behaviour 68, 39-44.